

"J CHIRP, CHIRP J"

A Little Birdie Told Me About Developments in ABR & ASSR Testing;

Using the CE Chirp Stimulus for Faster Test Times

Jill Craig, MA 2010 EHDI Meeting-Chicago March 1, 2010

In a Perfect World

Interacoustics®

In the Real World

Challenges of Diagnosing Hearing Loss

- Can take multiple visits to finalize results
- Each appointment can take sometimes hours to complete
- Sedation or no sedation?
- Objective vs Subjective?
- "Peak Picking" Experience

The Auditory Brainstem Response (ABR)

- An evoked potential is an electrical response induced by sound; it arises from the structures within the ear, nerve, and brain at some distance from skin electrodes.
- It is measured in the time domain
- Relies on synchronous nerve firing

- Historical, Gold Standard
- Normative Data/Research Supported
- Differential diagnosis ANSD
- Comfortable!

ABR.....the challenges

- Can Be Time Consuming
- Peak Picking Experience
- Intensity limitations
- Single Intensity and Frequency

The Auditory Steady State Response

- Similar to ABR, but EEG activity is analyzed in frequency domain
- Stimulus is modulated pure tone
- EEG activity modulating at same frequency as the stimulus is representative of a response
- The presence or absence of a response is determined by a statistical computer algorithm

ASSR History

- Late 1970's and Early 1980's-Initial Research
 Galambos
- 1991-First clinically available system
- Today-Several Clinical Systems
 - Biologic, GN Otometrics, GSI, IHS, Interacoustics

ASSR.....the good

- More Frequency Specific
- No peak picking—Objective Detection
- Multiple and Simultaneous Frequency Testing
- Can test at higher intensities than ABR

ASSR.....the challenges

- Limited normative/research data as compared to ABR
- Small amplitude response; maybe more sensitive to noise
- Exact Neural Generators not defined
- CHANGE!!

Testing Considerations

ABR Stimulus

Click

- Abrupt and rapid onset
- Broad spectrum (theoretically stims the entire basilar membrane) NOT FREQUENCY SPECIFIC!!!
 - Test 2000-4000Hz frequency range!
- The greater number of neurons that fire results in a larger response amplitude.
- Need Good Neural Synchrony

ABR Stimulus

- Tone Burst
 - Provides more frequency specific information
 - High correlation between behavioral and TB responses
 - Can diagnosis low and high frequency HL
 - 500Hz can be difficult!
 - Repeatability is difficult because there is less synchronous activity at that region on the cochlea
 - Requires longer window
 - Response can be 4-8ms later than a click

New Stimulus for ABR & ASSR

Travel time in the cochlea is different for different frequencies

Output compensation for traveling time

- If the narrow band activity is recorded, compensation for the traveling time can be obtained by time-shifting the narrow band activity
- After summation the so-called *Stacked ABR* is obtained
- The Stacked ABR is significantly larger than the normal ABR
- The procedure to obtain the Stacked ABR is complex and needs considerable recording time – and has therefore not become clinically popular.

Stacked ABR – effective but impractical

M. Don – House Ear Institute, 2002

Interacoustics[®]

Input compensation for traveling time

- Another way to compensate for the traveling time is to timeshift the different frequency components of the <u>stimulus</u>
- This is done by allowing the low-frequencies to appear before the high-frequencies
- Such a click with re-shuffled frequency components is called a *Chirp*.
- A *chirp* stimulus is particularly effective at lower stimulation levels, where <u>response amplitude almost doubles</u> compared to an equal bandwidth click stimulus.*

* Elberling and Don 2008, J. Acoust. Soc. Am.

Instead of Synchronizing the Response....Synchronize the Stimulus!

Lower frequencies are sent a bit earlier into the cochlea than the higher frequencies

Frequency Specific Narrow Band CE-Chirps

Understanding the CE Chirp

Animation of the CE Chirp

Study #1 on adults

- Testing:
 - Delay Comp. Click VS. Click (= full frequency range)
 - 49 normal-hearing younger adults

Conclusion study #1

30 dBnHL

	Detection Rate	Detection Time
Click	83.3 %	72 s
Delay Comp. Click	97.7 %	30 s

Study #2 on newborns

- Screening:
 - Click (40 dBnHL) and Chirp (35 dBnHL)
 - Several studies incl two groups of newborns (each of about N = 1,800)

Conclusion study #2

	Detection Rate	Detection Time
Click <u>40dBnHL</u>	95.4 %	42 s
Delay Comp. Click <u>35dBnHL</u>	96.3 %	28 s

Documenting Efficiency of CE-Chirp[®] family

The efficiency of these new stimuli are documented in a series of publications:

- 1. <u>Don, M</u>., Elberling, C., and Maloff, E. (2009). "Input and output compensation for the cochlear traveling wave delay in wide-band ABR recordings: Implications for small acoustic tumor detection," J. Am. Acad. Audiol. 20, (2).
- 2. <u>Elberling, C</u>., and Don, M. (2008). "Auditory brainstem responses to a chirp stimulus designed from derived-band latencies in normal-hearing subjects," J. Acoust. Soc. Am. 124, 3022-3037.
- 3. <u>Elberling, C</u>, Don, M, Cebulla, M, & Stürzebecher, E. (2007). Auditory steady-state responses to chirp stimuli based on cochlear traveling wave delay. J. Acoust. Soc. Am. 122, 2772-2785
- 4. <u>Stürzebecher</u>, E, Cebulla, M, Elberling. C, & Berger, T. (2006). New efficient stimuli for evoking frequency-specific auditory steady-state responses. J. Am. Acad. Audiol. 17, 448-461.
- 5. <u>Cebulla</u>, M, Stürzebecher, E, Elberling, C, & Berger, T. (2006). New click-like stimuli for newborn hearing screening. J. Am. Acad. Audiol. 18, 725-738

Interacoustics®

Implementation of ASSR into the Clinic

ASSR is an additional tool in the "Cross Check Principle"

"In summary, we believe that the unique limitations of conventional behavioral audiometry dictate the need for a 'test battery' approach. The key concept governing our assessment strategy is the cross-check principle. The basic operation of this principle is that no result be accepted until it is confirmed by an independent measure. . . . We believe that the application of the crosscheck principle to our clinical population has had an appreciable effect on the accuracy with which we can identify and quantify hearing loss during the critical years for language-learning." (Jerger and Hayes, 1976, p. 65)

Data Samples

To optimize session strategy decisions as test progresses, the response confidence is tracked over time for each test frequency.

They can't all be good!

- Failed UNHS (OAE and AABR)
- Full Term
- No Family History
- 5 months old at time of testing
- Normal Tymps/Absent Reflexes

OAE Results

f2	DP	L1	L2	DPleve	I Noise level,	S/N level
500 Hz	318 Hz	65 d B	55 d B	16.5 dB	13.0 dB	3.5 dB
1000 Hz	638 Hz	65 d B	55 d B	9.9 d B	7.2 dB	2.7 dB
2000 Hz	1278 Hz	65 d B	55 d B	9.1 dB	2.5 dB	6.6 dB
4000 Hz	2556 Hz	65 d B	55 d B	-3.2 dB	-9.4 dB	6.2 dB
6000 Hz	3836 Hz	65 d B	55 d B	-3.2 dB	-12.4 dB	9.2 dB
8000 Hz	5114 Hz	65 d B	55 d B	-12.0 dB	-9.5 dB	-2.5 dB
S/N st	op oriteria	Re	ejection level		Stimulus toler	ance /
	7 dB		20 d B		±3dB	

Right Ear

f2	DP	L1	L2	DP let	vel 🛛 Noise level	S/N level
500 Hz	318 Hz	65 d B	55 d B	19.5¢	1B 14.6 dB	4.8 dB
1000 Hz	638 Hz	65 dB	55 d B	4.3 d	B -1.2 dB	5.5 d B
2000 Hz	1278 Hz	65 dB	55 d B	-8.4 c	16 –6.5 d B	-1.9 dB
4000 Hz	2556 Hz	65 d B	55 d B	2.7 d	8 5.0 dB	-2.2 dB
6000 Hz	3836 Hz	65 d B	55 d B	6.9 d	B 5.7 dB	1.3 dB
S/N st	op criteria	Re	ejection level		Stimulus toler	ance
	7 dB		20 d B		±3d8	

Generates an Audiogram

Interacoustics®

ASSR AC Thresholds

• Many studies published and in process

- Recently, Van Maanen & Stapells, 2009 found:

	250Hz	500Hz	1000Hz	2000Hz	4000Hz
Infants and Children		50	45	40	40

Must find this level or better to be called normal!!

MORE RESEARCH IS NEEDED!! There is NOT sufficient evidence to support the use of ASSR only!

ASSR BC Thresholds

• Few studies published

	500Hz	1000Hz	2000Hz	4000Hz
Preterm Infants	<u><</u> 30	<u><</u> 30	<u><</u> 50	<u><</u> 50
Post-term infants (0-11 months)	<u><</u> 30	<u><</u> 20	<u><</u> 40	<u><</u> 30
Infants (12-24 months)	<u><</u> 40	<u><</u> 20	<u><</u> 40	<u><</u> 30
Adults	<u><</u> 50	<u><</u> 40	<u><</u> 30	<u><</u> 30

Source: Recommendations from: Small, S.A. & Stapells, D.R. (2005). Multiple auditory steady-state response thresholds to bone-conduction stimuli in adults with normal hearing *Journal of the American Academy of Audiology*, 16(3): 172-183; Small, S.A & Stapells, D.R. (2006). Multiple auditory steady-state response thresholds to bone-conduction stimuli in young infants with normal hearing. *Ear and Hearing*, 27: 219-228; Small, S.A.& Stapells, D.R. (2008). Maturation of bone-conduction multiple auditory steady-state responses. *International Journal of Audiology*, 47: 476-488,

Adapted from: Hall, Swanepoel, *Objective Assessment of Hearing, Plural Publishing 2009, page 128, figure 6-11*

Correction Factors Are Not All The Same!

ASSR to Audiogram Correction Factors dB ASSR 0/5 10/15 20/25 30/35 40/45 50/55 60/65 70/75 80/85 90/95 100 500Hz 15 15 10 10 15 5 5 0 0 1kHz 10 10 10 5 5 5 0 0 0 2kHz 5 5 5 5 0 0 0 0 0 0 4kHz 15 15 10 10 10 5 5 0 0 0 0 0 2kHz 5 5 5 5 5 0 <td< th=""><th>Selected cor</th><th>rection</th><th></th><th></th><th>Predefir Na</th><th>ned corre ame of co</th><th>ction tem</th><th>plates :</th><th></th><th></th><th>lew elete</th><th>Save Cancel</th><th></th></td<>	Selected cor	rection			Predefir Na	ned corre ame of co	ction tem	plates :			lew elete	Save Cancel	
1kHz 10 10 10 10 5 5 5 5 0 0 0 0 2kHz 5 5 5 5 5 5 0 0 0 0 4kHz 15 15 15 10 10 10 5 5 5 0 0	ASSR to Au 0/5 500Hz 15	diogram Co 10/15	20/25	Factors	40/45	50/55 15	60/65 5	70/75	80/85 5	90/95 0	100	dB ASSR	
4kHz 15 15 15 10 10 10 5 5 5 0 0	1kHz 10	10	10 5	10 10	5	5 5	5	5	0	0	0		
	2KH2 0	0	5	0	5 10	0 10	0 5	0 E	0 5	0	0		
OK Cancel	4kHz 15	15	15	10	10	10	5	5	5	0	U		

Other Considerations for ASSR

- Future Research
 - Hearing Aid Fittings
 - Hearing Screening
 - Assessing Suprathreshold Hearing
 - ANSD

One Step Further.....

• If we can generate larger response amplitudes for ASSR......

.....how about for ABR???

Take Home Messages

- Use of the CE Chirp is well documented in the literature
- Use of the CE Chirp can increase response amplitudes resulting in a shorter test time
- ASSR can be a part of the cross check principle

jgc@interacoustics-us.com

